Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Pancreatology ; 23(6): 742-749, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37604733

ABSTRACT

Chymotrypsin-like protease (CTRL) is one of the four chymotrypsin isoforms expressed in the human exocrine pancreas. Human genetic and experimental evidence indicate that chymotrypsins B1, B2, and C (CTRB1, CTRB2 and CTRC) are important not only for protein digestion but also for protecting the pancreas against pancreatitis by degrading potentially harmful trypsinogen. CTRL has not been reported to play a similar role, possibly due to its low abundance and/or different substrate specificity. To address this problem, we investigated the specificity of the substrate-binding groove of CTRL by evolving the substrate-like canonical loop of the Schistocerca gregaria proteinase inhibitor 2 (SGPI-2), a small-protein reversible chymotrypsin inhibitor to bind CTRL. We found that phage-associated SGPI-2 variants with strong affinity to CTRL were similar to those evolved previously against CTRB1, CTRB2 or bovine chymotrypsin A (bCTRA), indicating comparable substrate specificity. When tested as recombinant proteins, SGPI-2 variants inhibited CTRL with similar or slightly weaker affinity than bCTRA, confirming that CTRL is a typical chymotrypsin. Interestingly, an SGPI-2 variant selected with a Thr29His mutation in its reactive loop was found to inhibit CTRL strongly, but it was digested rapidly by bCTRA. Finally, CTRL was shown to degrade human anionic trypsinogen, however, at a much slower rate than CTRB2, suggesting that CTRL may not have a significant role in the pancreatic defense mechanisms against inappropriate trypsinogen activation and pancreatitis.


Subject(s)
Chymases , Chymotrypsin , Protease Inhibitors , Animals , Cattle , Humans , Chymases/antagonists & inhibitors , Chymases/chemistry , Chymotrypsin/chemistry , Pancreatitis/prevention & control , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Substrate Specificity , Trypsinogen , Peptide Library
2.
Brasília; CONITEC; maio 2022.
Non-conventional in Portuguese | LILACS, BRISA/RedTESA | ID: biblio-1368825

ABSTRACT

INTRODUÇÃO: Pacientes com fatores de risco como idade avançada, imunodepressão, obesidade e doenças cardiovasculares têm risco aumentado de internação, intubação e morte. De acordo com dados brasileiros, o risco de morte por Covid-19 aumenta com o número de fatores de risco que o paciente apresenta, sendo igual a 17% em pacientes com 2 fatores de risco e 76% na presença de 8 fatores de risco. Além disso, mesmo aqueles pacientes que sobrevivem a uma internação em terapia intensiva frequentemente enfrentam sequelas e representam alto custo para o sistema público. O medicamento nirmatrelvir associado ao ritonavir têm o objetivo de prevenir internações, complicações e morte. Ele é indicado para pacientes com Covid-19 leve a moderada, não hospitalizados, até 5 dias do início dos sintomas. Apesar dos avanços da vacinação no Brasil, evidências sobre a falha vacinal em idosos e imunodeprimidos destacam a importância da disponibilidade de alternativas terapêuticas para


Subject(s)
Humans , Severity of Illness Index , Ritonavir/therapeutic use , Chymases/antagonists & inhibitors , SARS-CoV-2/drug effects , COVID-19/drug therapy , Unified Health System , Brazil , Cost-Benefit Analysis/economics
4.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830195

ABSTRACT

Acute pancreatitis is still a life-threatening disease without an evidenced therapeutic agent. In this study, the effect of chymase in acute pancreatitis and the possible effect of a chymase inhibitor in acute pancreatitis were investigated. Hamsters were subcutaneously administered 3.0 g/kg of L-arginine to induce acute pancreatitis. Biological markers were measured 1, 2, and 8 h after L-arginine administration. To investigate the effect of a chymase inhibitor, a placebo (saline) or a chymase inhibitor TY-51469 (30 mg/kg) was given 1 h after L-arginine administration. The survival rates were evaluated for 24 h after L-arginine administration. Significant increases in serum lipase levels and pancreatic neutrophil numbers were observed at 1 and 2 h after L-arginine administration, respectively. Significant increases in pancreatic neutrophil numbers were observed in the placebo-treated group, but they were significantly reduced in the TY-51469-treated group. A significant increase in the pancreatic tumor necrosis factor-α mRNA level was observed in the placebo-treated group, but it disappeared in the TY-51469-treated group. Chymase activity significantly increased in the placebo-treated group, but it was significantly reduced by treatment with TY-51469. The survival rate significantly improved in the TY-51469-treated group. A chymase inhibitor may become a novel therapeutic agent for acute pancreatitis.


Subject(s)
Chymases/antagonists & inhibitors , Chymases/metabolism , Pancreatitis/drug therapy , Pancreatitis/mortality , Sulfonamides/administration & dosage , Thiophenes/administration & dosage , Animals , Arginine/adverse effects , Cricetinae , Disease Models, Animal , Leukocyte Count , Lipase/blood , Male , Matrix Metalloproteinase 9/metabolism , Neutrophils/metabolism , Pancreatitis/blood , Pancreatitis/chemically induced , RNA, Messenger/genetics , Signal Transduction/drug effects , Survival Rate , Treatment Outcome , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
5.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34319869

ABSTRACT

Rapid repurposing of existing drugs as new therapeutics for COVID-19 has been an important strategy in the management of disease severity during the ongoing SARS-CoV-2 pandemic. Here, we used high-throughput docking to screen 6000 compounds within the DrugBank library for their potential to bind and inhibit the SARS-CoV-2 3 CL main protease, a chymotrypsin-like enzyme that is essential for viral replication. For 19 candidate hits, parallel in vitro fluorescence-based protease-inhibition assays and Vero-CCL81 cell-based SARS-CoV-2 replication-inhibition assays were performed. One hit, diclazuril (an investigational anti-protozoal compound), was validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro (IC50 value of 29 µM) and modestly inhibited SARS-CoV-2 replication in Vero-CCL81 cells. Another hit, lenvatinib (approved for use in humans as an anti-cancer treatment), could not be validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro, but serendipitously exhibited a striking functional synergy with the approved nucleoside analogue remdesivir to inhibit SARS-CoV-2 replication, albeit this was specific to Vero-CCL81 cells. Lenvatinib is a broadly-acting host receptor tyrosine kinase (RTK) inhibitor, but the synergistic effect with remdesivir was not observed with other approved RTK inhibitors (such as pazopanib or sunitinib), suggesting that the mechanism-of-action is independent of host RTKs. Furthermore, time-of-addition studies revealed that lenvatinib/remdesivir synergy probably targets SARS-CoV-2 replication subsequent to host-cell entry. Our work shows that combining computational and cellular screening is a means to identify existing drugs with repurposing potential as antiviral compounds. Future studies could be aimed at understanding and optimizing the lenvatinib/remdesivir synergistic mechanism as a therapeutic option.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , COVID-19/virology , Chymases/antagonists & inhibitors , Phenylurea Compounds/pharmacology , Quinolines/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/enzymology , Cells, Cultured , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
6.
Biomed J ; 44(1): 74-85, 2021 03.
Article in English | MEDLINE | ID: mdl-33736953

ABSTRACT

The newly emerged SARS-CoV-2 strains from the coronavirus (CoV) family is causing one of the most disruptive pandemics of the past century. Developing antiviral drugs is a challenge for the scientific community and pharmaceutical industry. Given the health emergency, repurposing of existing antiviral, antiinflammatory or antimalarial drugs is an attractive option for controlling SARS-CoV-2 with drugs. However, phytochemicals selected based on ethnomedicinal information as well as in vitro antiviral studies could be promising as well. Here, we summarise the phytochemicals with reported anti-CoV activity, and further analyzed them computationally to accelerate validation for drug development against SARS-CoV-2. This systematic review started from the most potent phytocompounds (IC50 in µM) against SARS-CoV, followed by a cluster analysis to locate the most suitable lead(s). The advanced molecular docking used the crystallography structure of SARS-CoV-2-cysteine-like protease (SARS-CoV-2-3CLpro) as a target. In total, seventy-eight phytochemicals with anti-CoV activity against different strains in cellular assays, were selected for this computational study, and compared with two existing repurposed FDA-approved drugs: lopinavir and ritonavir. This review brings insights in the potential application of phytochemicals and their derivatives, which could guide researchers to develop safe drugs against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Chymases/antagonists & inhibitors , Phytochemicals/therapeutic use , SARS-CoV-2/drug effects , Chymases/chemistry , Drug Repositioning , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , SARS-CoV-2/enzymology
7.
Clin Exp Hypertens ; 43(5): 392-401, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-33687310

ABSTRACT

Background: Chymase generates angiotensin II (ANG II) independently of angiotensin-converting enzyme in tissues and it contributes to vascular remodeling and development of hypertension, however the exact mechanism of its action is unclear. Methods: Hence, the effects of chymase inhibition were examined in anesthetized spontaneously hypertensive rats (SHR) in two stages of the disease development, ie. pre-hypertensive (SHR7) and with established hypertension (SHR16). Chymostatin, a commercial chymase inhibitor, was infused intravenously alone or in subsequent groups co-infused with captopril. Results: Mean blood pressure (MBP), total renal blood flow (RBF) and ANG II content (plasma and tissues) were measured. In SHR16 chymase blockade significantly decreased MBP (-6%) and plasma (-38%), kidney (-71%) and heart (-52%) ANG II levels. In SHR7 chymostatin did not influence MBP or RBF, but significantly decreased heart ANG II level. Conclusion: Jointly, functional studies and ANG II determinations support the evidence that in SHR chymase can raise plasma ANG II and contribute to blood pressure elevation. We propose that addition of chymase blockade to ACE inhibition could be a promising approach in the treatment of hypertensive patients resistant to therapy with ACE-inhibitors alone.


Subject(s)
Angiotensin II/blood , Blood Pressure/physiology , Chymases/metabolism , Hemodynamics , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Blood Pressure/drug effects , Chymases/antagonists & inhibitors , Glomerular Filtration Rate/drug effects , Hemodynamics/drug effects , Hypertension/physiopathology , Ilium/blood supply , Ilium/drug effects , Kidney/blood supply , Kidney/drug effects , Kidney/physiopathology , Male , Oligopeptides , Perfusion , Potassium/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Regional Blood Flow/drug effects , Sodium/metabolism
8.
ACS Appl Bio Mater ; 4(4): 3079-3088, 2021 04 19.
Article in English | MEDLINE | ID: mdl-35014396

ABSTRACT

Postoperative adhesion remains a problem in surgery and causes postoperative complications. Laparoscopic surgery is now common, making it increasingly important to develop injectable formulations of adhesion barriers that can be applied during such surgeries. Temperature-responsive injectable polymer (IP) systems exhibiting a sol-to-gel transition in response to temperature are promising candidates as effective adhesion barriers that can be applied conveniently during laparoscopic surgery. We previously developed IP systems exhibiting temperature-responsive irreversible gelation based on a triblock copolymer of poly(ε-caprolactone-co-glycolic acid) (PCGA) and poly(ethylene glycol) (PEG) (PCGA-b-PEG-b-PCGA: tri-PCG) and a tri-PCG derivative with acrylate groups at the termini (tri-PCG-acryl). A mixture of tri-PCG-acryl micelle solution and tri-PCG micelle solution containing polythiol exhibited an irreversible sol-to-gel transition in response to a temperature increase. The gel contains partial covalent cross-linking, and the degradation and physical properties of these IP hydrogels can easily be controlled by changing the mixing ratio of tri-PCG-acryl in the formulation. In this study, we investigated the effect of physical properties of the IP hydrogel on the efficacy of adhesion prevention using our IP system containing various amounts of tri-PCG-acryl. Our results show that an IP system with lower physical strength and rapid degradation reduces adhesion more effectively. Chymase plays a crucial role in exacerbating adhesion formation, and a peptide derivative-type chymase inhibitor (CI), Suc-Val-Pro-PheP(OPh)2, was previously reported to prevent adhesion. We thus investigated the concomitant use of this CI with our IP system using two methods: separate administration of the CI and IP and entrapping the CI in the IP hydrogel. IP systems with separately administrated CI provided better results than the administration of an IP system entrapping the CI or sole IP systems. These findings suggest that the pharmacological effect of the CI and a physical barrier generated by our IP system effectively prevents adhesion.


Subject(s)
Biocompatible Materials/pharmacology , Chymases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Polymers/pharmacology , Temperature , Tissue Adhesions/prevention & control , Biocompatible Materials/chemistry , Chymases/metabolism , Enzyme Inhibitors/chemistry , Humans , Materials Testing , Molecular Structure , Particle Size , Polymers/chemistry
9.
J Ethnopharmacol ; 270: 113610, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33246121

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acmella oleracea (L.) R. K. Jansen (Asteraceae), known as jambú in Brazil, is used in traditional medicine as analgesic and for inflammatory conditions, characterized by the presence of N-alkylamides, mainly spilanthol. This bioactive compound is responsible for the above-described pharmacological properties, including sialagogue and anesthetic. AIM OF THE STUDY: This study aimed to characterize the anti-inflammatory effects of A. oleracea leaves (AOEE-L) and flowers (AOEE-F) extracts, including an isolated alkylamide (spilanthol), using in vitro and in vivo models. The mechanism underlying this effect was also investigated. MATERIALS AND METHODS: Extracts were analyzed by HPLC-ESI-MS/MS in order to characterize the N-alkylamides content. AOEE-L, AOEE-F (25-100 µg/mL) and spilanthol (50-200 µM) were tested in vitro on VSMC after stimulation with hyperglycemic medium (25 mM glucose). Their effects over nitric oxide (NO) generation, chymase inhibition and expression, catalase (CAT), superoxide anion (SOD) radical activity were evaluated. After an acute administration of extracts (10-100 mg/mL) and spilanthol (6.2 mg/mL), the anti-inflammatory effects were evaluated by applying the formalin test in rats. Blood was collected to measure serum aminotransferases activities, NO activity, creatinine and urea. RESULTS: A number of distinct N-alkylamides were detected and quantified in AOEE-L and AOEE-F. Spilanthol was identified in both extracts and selected for experimental tests. Hyperglycemic stimulation in VSMC promoted the expression of inflammatory parameters, including chymase, NO, CAT and SOD activity and chymase expression, all of them attenuated by the presence of the extracts and spilanthol. The administration of extracts or spilanthol significantly inhibited edema formation, NO production and cell tissue infiltration in the formalin test, without causing kidney and liver toxicity. CONCLUSION: Taken together, these results provide evidence for the anti-inflammatory activity of leaves and flowers extracts of jambú associated distinctly with their chemical profile. The effects appear to be associated with the inhibition of chymase activity, suppression of the proinflammatory cytokine NO and antioxidant activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Asteraceae/chemistry , Chymases/antagonists & inhibitors , Plant Extracts/pharmacology , Polyunsaturated Alkamides/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Brazil , Cell Line , Chymases/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Ethanol/chemistry , Flowers/chemistry , Formaldehyde/toxicity , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Male , Medicine, Traditional , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Polyunsaturated Alkamides/therapeutic use , Rats, Wistar , Reactive Oxygen Species/metabolism
10.
J Pharmacol Exp Ther ; 376(2): 213-221, 2021 02.
Article in English | MEDLINE | ID: mdl-33154104

ABSTRACT

Mouse mast cell protease 4 (mMCP-4), the murine functional analog to the human chymase, is a serine protease synthesized and stored in mast cell secretory granules. Our previous studies reported physiologic and pathologic roles for mMCP-4 in the maturation and synthesis of the vasoactive peptide endothelin-1 (ET-1) from its precursor, big ET-1. The aim of this study was to investigate the impact of mast cell degranulation or stabilization on mMCP-4-dependent pressor responses after the administration of big ET-1 or angiotensin I (Ang I). In anesthetized mice, mast cell degranulation induced by compound 48/80 (C48/80) or stabilization by cromolyn enhanced or repressed, respectively, the dose-dependent vasopressor responses to big ET-1 in wild-type (WT) mice but not in mMCP-4 knockout mice in a chymase inhibitor (TY-51469)-sensitive fashion. In addition, mMCP-4-dependent hydrolysis of the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin was depleted or enhanced in peritoneal mast cells isolated from mice pretreated with C48/80 or cromolyn, respectively. Furthermore, C48/80 or cromolyn markedly increased or abolished, respectively, ET-1 (1-31) conversion from exogenous big ET-1 in WT mice peritoneal fluid-isolated mast cells, in vitro. Finally, the vasopressor responses to Ang I were unaffected by mast cell activation or stabilization, whereas those induced by the angiotensin-converting enzyme-resistant Ang I analog, [Pro11, D-Ala12] Ang I, were potentiated by C48/80. Altogether, the present study shows that mast cell activation enhances the mMCP-4-dependent vasoactive properties of big ET-1 but not Ang I in the mouse model. SIGNIFICANCE STATEMENT: The current work demonstrates a significant role for mast cell stability in the cardiovascular pharmacology of big endothelin-1 but not angiotensin I in the murine systemic circulation.


Subject(s)
Angiotensin I/pharmacology , Blood Pressure , Cell Degranulation , Endothelin-1/pharmacology , Mast Cells/physiology , Serine Endopeptidases/metabolism , Animals , Cells, Cultured , Chymases/antagonists & inhibitors , Cromolyn Sodium/pharmacology , Enzyme Inhibitors/pharmacology , Male , Mast Cell Stabilizers/pharmacology , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Peritoneum/cytology , Serine Endopeptidases/genetics , Sulfonamides/pharmacology , Thiophenes/pharmacology
11.
Int J Mol Sci ; 21(20)2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33050674

ABSTRACT

Chymase has several functions, such as angiotensin II formation, which can promote diabetic kidney disease (DKD). In this study, we evaluated the effect of the chymase inhibitor TY-51469 on DKD in diabetic db/db mice. Diabetic mice were administered TY-51469 (10 mg/kg/day) or placebo for 4 weeks. No significant difference was observed in body weight and fasting blood glucose between TY-51469- and placebo-treated groups. However, a significant reduction in urinary albumin/creatinine ratio was observed in the TY-51469-treated group compared with the placebo-treated group. In the renal extract, chymase activity was significantly higher in placebo-treated mice than in non-diabetic db/m mice, but it was reduced by treatment with TY-51469. Both NADPH oxidase 4 expression and the oxidative stress marker malondialdehyde were significantly augmented in the placebo-treated group, but they were attenuated in the TY-51469-treated group. Significant increases of tumor necrosis factor-α and transforming growth factor-ß mRNA levels in the placebo-treated group were significantly reduced by treatment with TY-51469. Furthermore, the expression of nephrin, which is a podocyte-specific protein, was significantly reduced in the placebo-treated group, but it was restored in the TY-51469-treated group. These findings demonstrated that chymase inhibition reduced albuminuria via attenuation of podocyte injury by oxidative stress.


Subject(s)
Albuminuria/etiology , Albuminuria/urine , Chymases/antagonists & inhibitors , Diabetic Nephropathies/metabolism , Animals , Biomarkers , Blood Glucose , Body Weight , Creatine/metabolism , Diabetes Mellitus, Experimental , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/urine , Disease Models, Animal , Gene Expression , Immunohistochemistry , Malondialdehyde/metabolism , Mast Cells/metabolism , Mice , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , RNA, Messenger
12.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066113

ABSTRACT

The development and progression of non-alcoholic steatohepatitis (NASH) are linked to oxidative stress, inflammation, and fibrosis of the liver. Chymase, a chymotrypsin-like enzyme produced in mast cells, has various enzymatic actions. These actions include activation of angiotensin II, matrix metalloproteinase (MMP)-9, and transforming growth factor (TGF)-ß, which are associated with oxidative stress, inflammation, and fibrosis, respectively. Augmentation of chymase activity in the liver has been reported in various NASH models. Generation of hepatic angiotensin II and related oxidative stress is upregulated in NASH but attenuated by treatment with a chymase inhibitor. Additionally, increases in MMP-9 and accumulation of inflammatory cells are observed in NASH but are decreased by chymase inhibitor administration. TGF-ß and collagen I upregulation in NASH is also attenuated by chymase inhibition. These results in experimental NASH models demonstrate that a chymase inhibitor can effectively ameliorate NASH via the reduction of oxidative stress, inflammation, and fibrosis. Thus, chymase may be a therapeutic target for amelioration of NASH.


Subject(s)
Chymases/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Chymases/metabolism , Enzyme Inhibitors/pharmacology , Humans , Liver/drug effects , Liver/enzymology , Non-alcoholic Fatty Liver Disease/metabolism
13.
J Innate Immun ; 12(5): 357-372, 2020.
Article in English | MEDLINE | ID: mdl-32498069

ABSTRACT

Mast cells are now recognized as key players in diverse pathologies, but the mechanisms by which they contribute in such settings are only partially understood. Mast cells are packed with secretory granules, and when they undergo degranulation in response to activation the contents of the granules are expelled to the extracellular milieu. Chymases, neutral serine proteases, are the major constituents of the mast cell granules and are hence released in large amounts upon mast cell activation. Following their release, chymases can cleave one or several of a myriad of potential substrates, and the cleavage of many of these could potentially have a profound impact on the respective pathology. Indeed, chymases have recently been implicated in several pathological contexts, in particular through studies using chymase inhibitors and by the use of chymase-deficient animals. In many cases, chymase has been shown to account for mast cell-dependent detrimental effects in the respective conditions and is therefore emerging as a promising drug target. On the other hand, chymase has been shown to have protective roles in other pathological settings. More unexpectedly, chymase has also been shown to control certain homeostatic processes. Here, these findings are reviewed.


Subject(s)
Chymases/physiology , Mast Cells/enzymology , Animals , Chymases/antagonists & inhibitors , Chymases/deficiency , Chymases/immunology , Homeostasis/drug effects , Humans , Immunity, Innate/drug effects , Mast Cells/immunology , Mice, Knockout , Protease Inhibitors/pharmacology
14.
FEBS Open Bio ; 10(6): 995-1004, 2020 06.
Article in English | MEDLINE | ID: mdl-32374074

ABSTRACT

A novel coronavirus [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or 2019 novel coronavirus] has been identified as the pathogen of coronavirus disease 2019. The main protease (Mpro , also called 3-chymotrypsin-like protease) of SARS-CoV-2 is a potential target for treatment of COVID-19. A Mpro homodimer structure suitable for docking simulations was prepared using a crystal structure (PDB ID: 6Y2G; resolution 2.20 Å). Structural refinement was performed in the presence of peptidomimetic α-ketoamide inhibitors, which were previously disconnected from each Cys145 of the Mpro homodimer, and energy calculations were performed. Structure-based virtual screenings were performed using the ChEMBL database. Through a total of 1 485 144 screenings, 64 potential drugs (11 approved, 14 clinical, and 39 preclinical drugs) were predicted to show high binding affinity with Mpro . Additional docking simulations for predicted compounds with high binding affinity with Mpro suggested that 28 bioactive compounds may have potential as effective anti-SARS-CoV-2 drug candidates. The procedure used in this study is a possible strategy for discovering anti-SARS-CoV-2 drugs from drug libraries that may significantly shorten the clinical development period with regard to drug repositioning.


Subject(s)
Betacoronavirus/enzymology , Chymases/metabolism , Coronavirus Infections/metabolism , Drug Discovery/methods , Drug Repositioning/methods , Pharmaceutical Preparations/metabolism , Pneumonia, Viral/metabolism , Serine Proteinase Inhibitors/metabolism , Viral Proteins/metabolism , Betacoronavirus/drug effects , COVID-19 , Catalytic Domain , Chymases/antagonists & inhibitors , Chymases/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Crystallization , Databases, Chemical , Humans , Models, Molecular , Molecular Docking Simulation , Pandemics , Pharmaceutical Preparations/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Proteinase Inhibitors/chemistry , Viral Proteins/chemistry
15.
Am Heart J ; 224: 129-137, 2020 06.
Article in English | MEDLINE | ID: mdl-32375104

ABSTRACT

BACKGROUND: Adverse cardiac remodeling is a major risk factor for the development of post myocardial infarction (MI) heart failure (HF). This study investigates the effects of the chymase inhibitor fulacimstat on adverse cardiac remodeling after acute ST-segment-elevation myocardial infarction (STEMI). METHODS: In this double-blind, randomized, placebo-controlled trial patients with first STEMI were eligible. To preferentially enrich patients at high risk of adverse remodeling, main inclusion criteria were a left-ventricular ejection fraction (LVEF) ≤45% and an infarct size >10% on day 5 to 9 post MI as measured by cardiac MRI. Patients were then randomized to 6 months treatment with either 25 mg fulacimstat (n = 54) or placebo (n = 53) twice daily on top of standard of care starting day 6 to 12 post MI. The changes in LVEF, LV end-diastolic volume index (LVEDVI), and LV end-systolic volume index (LVESVI) from baseline to 6 months were analyzed by a central blinded cardiac MRI core laboratory. RESULTS: Fulacimstat was safe and well tolerated and achieved mean total trough concentrations that were approximately tenfold higher than those predicted to be required for minimal therapeutic activity. Comparable changes in LVEF (fulacimstat: 3.5% ±â€¯5.4%, placebo: 4.0% ±â€¯5.0%, P = .69), LVEDVI (fulacimstat: 7.3 ±â€¯13.3 mL/m2, placebo: 5.1 ±â€¯18.9 mL/m2, P = .54), and LVESVI (fulacimstat: 2.3 ±â€¯11.2 mL/m2, placebo: 0.6 ±â€¯14.8 mL/m2, P = .56) were observed in both treatment arms. CONCLUSION: Fulacimstat was safe and well tolerated in patients with left-ventricular dysfunction (LVD) after first STEMI but had no effect on cardiac remodeling.


Subject(s)
Chymases/antagonists & inhibitors , Heart Failure/drug therapy , Heart Ventricles/diagnostic imaging , ST Elevation Myocardial Infarction/drug therapy , Ventricular Function, Left/physiology , Ventricular Remodeling/drug effects , Double-Blind Method , Female , Heart Failure/diagnosis , Heart Failure/etiology , Heart Ventricles/physiopathology , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , ST Elevation Myocardial Infarction/complications , ST Elevation Myocardial Infarction/physiopathology , Stroke Volume/physiology , Treatment Outcome
16.
Int J Biol Macromol ; 156: 1007-1021, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32320803

ABSTRACT

Ticks inject serine protease inhibitors (serpins) into their feeding sites to evade serine protease-mediated host defenses against tick-feeding. This study describes two highly identitical (97%) but functionally different Amblyomma americanum tick saliva serpins (AAS41 and 46) that are secreted at the inception of tick-feeding. We show that AAS41, which encodes a leucine at the P1 site inhibits inflammation system proteases: chymase (SI = 3.23, Ka = 5.6 ± 3.7X103M-1 s-1) and α-chymotrypsin (SI = 3.18, Ka = 1.6 ± 4.1X104M-1 s-1), while AAS46, which encodes threonine has no inhibitory activity. Similary, rAAS41 inhibits rMCP-1 purified from rat peritonuem derived mast cells. Consistently, rAAS41 inhibits chymase-mediated inflammation induced by compound 48/80 in rat paw edema and vascular permeability models. Native AAS41/46 proteins are among tick saliva immunogens that provoke anti-tick immunity in repeatedly infested animals as revealed by specific reactivity with tick immune sera. Of significance, native AAS41/46 play critical tick-feeding functions in that RNAi-mediated silencing caused ticks to ingest significantly less blood. Importantly, monospecific antibodies to rAAS41 blocked inhibitory functions of rAAS41, suggesting potential for design of vaccine antigens that provokes immunity to neutralize functions of this protein at the tick-feeding site. We discuss our findings with reference to tick-feeding physiology and discovery of effective tick vaccine antigens.


Subject(s)
Amblyomma/chemistry , Anti-Inflammatory Agents/pharmacology , Chymases/antagonists & inhibitors , Chymotrypsin/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Serpins/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Chromatography, Affinity , Chromatography, High Pressure Liquid , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Gene Expression , Glycoproteins/genetics , Mice , Rabbits , Rats , Recombinant Proteins , Saccharomycetales/genetics , Serpins/chemistry , Serpins/genetics , Serpins/isolation & purification
17.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396702

ABSTRACT

A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme's independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.


Subject(s)
Chymases/metabolism , Disease Susceptibility , Kidney Diseases/etiology , Kidney Diseases/metabolism , Mast Cells/enzymology , Mast Cells/immunology , Angiotensin II/metabolism , Animals , Biomarkers , Chymases/antagonists & inhibitors , Disease Management , Humans , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Mast Cells/drug effects , Molecular Targeted Therapy , Nephritis/etiology , Nephritis/metabolism , Nephritis/pathology , Serine Proteinase Inhibitors/pharmacology
18.
J Med Chem ; 63(2): 816-826, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31855419

ABSTRACT

Chymase is a serine protease that is predominantly expressed by mast cells and has key roles in immune defense and the cardiovascular system. This enzyme has also emerged as a therapeutic target for cardiovascular disease due to its ability to remodel cardiac tissue and generate angiotensin II. Here, we used the nature-derived cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1) as a template for designing novel chymase inhibitors. The key binding contacts of SFTI-1 were optimized by combining a peptide substrate library screen with structure-based design, which yielded several variants with potent activity. The lead variant was further modified by replacing the P1 Tyr residue with para-substituted Phe derivatives, generating new inhibitors with improved potency (Ki = 1.8 nM) and higher selectivity over closely related enzymes. Several variants were shown to block angiotensin I cleavage in vitro, highlighting their potential for further development and future evaluation as pharmaceutical leads.


Subject(s)
Chymases/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Amino Acid Substitution , Angiotensin II/biosynthesis , Crystallography, X-Ray , Drug Design , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Dynamics Simulation , Phenylalanine/chemistry , Small Molecule Libraries , Structure-Activity Relationship , Tyrosine/chemistry
19.
Physiol Rep ; 7(24): e14302, 2019 12.
Article in English | MEDLINE | ID: mdl-31872559

ABSTRACT

Chymase released from mast cells produces pro-fibrotic, inflammatory, and vasoconstrictor agents. Studies were performed to test the hypothesis that chronic chymase inhibition provides a renal protective effect in type 2 diabetes. Diabetic (db/db) and control mice (db/m) were chronically infused with a chymase-specific inhibitor or vehicle for 8 weeks. Baseline urinary albumin excretion (UalbV) averaged 42 ± 3 and 442 ± 32 microg/d in control (n = 22) and diabetic mice (n = 27), respectively (p < .05). After administration of chymase inhibitor to diabetic mice, the change in UalbV was significantly lower (459 ± 57 microg/d) than in vehicle-treated diabetic mice (645 ± 108 microg/d). UNGAL V was not different at baseline between diabetic mice that would receive the chymase inhibitor (349 ± 56 ng/d, n = 6) and vehicle (373 ± 99 ng/d, n = 6) infusions, but increased significantly only in the vehicle-treated diabetic mice (p < .05). Glomeruli of diabetic kidneys treated chronically with chymase inhibition demonstrated reduced mesangial matrix expansion compared to glomeruli from untreated diabetic mice. Plasma angiotensin II levels were not altered by chymase inhibitor treatment. In summary, chronic chymase inhibition slowed the progression of urinary albumin excretion in diabetic mice. In conclusion, renal chymase may contribute to the progression of albuminuria in type 2 diabetes renal disease.


Subject(s)
Albuminuria/drug therapy , Chymases/antagonists & inhibitors , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Enzyme Inhibitors/therapeutic use , Oligopeptides/therapeutic use , Albuminuria/etiology , Animals , Chymases/metabolism , Diabetic Nephropathies/etiology , Enzyme Inhibitors/pharmacology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Male , Mice , Oligopeptides/pharmacology
20.
Eur J Pharmacol ; 856: 172403, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31128093

ABSTRACT

Our aim was to examine the effects of ASB17061, an orally active novel chymase inhibitor, on angiotensin II-induced abdominal aortic aneurysm (AAA) in apolipoprotein E-deficient mice. Oral administration of ASB17061 (10 mg/kg) significantly suppressed angiotensin II-induced AAA formation in these mice. The pro-matrix metalloproteinase-9 (pro-MMP-9) level in AAA lesions was significantly suppressed by ASB17061 treatment, indicating that ASB17061 inhibited the accumulation of pro-MMP-9-producing cells in AAA lesions. Mouse mast cell protease 4 (mMCP-4, human chymase ortholog) was injected into BALB/c mice intraperitoneally to examine the ability of mMCP-4 to induce the accumulation of pro-MMP-9-producing cells. An intraperitoneal injection of mMCP-4 induced the accumulation of pro-MMP-9-producing cells including CD11b + Gr-1 + cells. Taken together, these data indicate that ASB17061 is a promising novel oral therapeutic agent for human AAA.


Subject(s)
Angiotensin II/pharmacology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/prevention & control , Apolipoproteins E/deficiency , Benzoic Acid/pharmacology , Chymases/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacology , Animals , Aortic Aneurysm, Abdominal/metabolism , Colitis/prevention & control , Enzyme Precursors/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...